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Modeling DNA structure, elasticity, and deformations at the base-pair level

Boris Mergell,* Mohammad R. Ejtehadi, and Ralf Everaers†

Max-Planck-Institut fu¨r Polymerforschung, Postfach 3148, D-55021 Mainz, Germany
~Received 24 January 2003; published 20 August 2003!

We present a generic model for DNA at the base-pair level. We use a variant of the Gay-Berne potential to
represent the stacking energy between the neighboring base pairs. The sugar-phosphate backbones are taken
into account by semirigid harmonic springs with a nonzero spring length. The competition between these two
interactions and the introduction of a simple geometrical constraint lead to a stacked right-handedB-DNA-like
conformation. The mapping of the presented model to the Marko-Siggia and the stack-of-plates model enables
us to optimize the free model parameters so as to reproduce the experimentally known observables such as
persistence lengths, mean and mean-squared base-pair step parameters. For the optimized model parameters,
we measured the critical force where the transition fromB- to S-DNA occurs to be approximately 140 pN. We
observe an overstretchedS-DNA conformation with highly inclined bases which partially preserves the stack-
ing of successive base pairs.
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I. INTRODUCTION

Following the discovery of the double helix by Watso
and Crick@1#, the structure and elasticity of DNA has bee
investigated on various length scales. The x-ray-diffract
studies of single crystals of DNA oligomers have led to
detailed picture of the possible DNA conformations@2,3#
with atomistic resolution. Information on the behavior
DNA on larger scales is accessible through nuclear magn
resonance@4# and various optical methods@5,6#, such as
video @7# and electron microscopy@8#. An interesting devel-
opment of the last decade is the nanomechanical experim
with individual DNA molecules@9–13# which, for example,
reveal the intricate interplay of supercoiling on large leng
scales and local denaturation of the double-helical struct

The experimental results are usually rationalized in
framework of two types of models: base-pair steps and v
ants of the continuum elastic wormlike chain. The first, mo
local, approach describes the relative location and orienta
of the neighboring base pairs in terms of intuitive parame
such as twist, rise, slide, roll, etc.,@14–17#. In particular, it
provides a mechanical interpretation of the biological fun
tion of particular sequences@18#. The second approach mod
els DNA on length scales beyond the helical pitch as
wormlike chain~WLC! with empirical parameters describin
the resistance to bending, twisting, and stretching@19,20#.
The results are in remarkable agreement with the nano
chanical experiments mentioned above@21#. WLC models
are commonly used in order to address biologically imp
tant phenomena such as supercoiling@22–24# or the wrap-
ping of DNA around histones@25#. In principle, the two de-
scriptions of DNA are linked by a systematic coarse-grain
procedure. From the given~average! values of rise, twist,
slide, etc., one can reconstruct the shape of the correspon
helix on large scales@14,18,26#. Similarly, the elastic con-
stant characterizing the continuum model is related to
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local elastic energies in a stack-of-plates model@27#.
Difficulties are encountered in situations which cannot

described by a linear response analysis around the un
turbed (B-DNA! ground state. This situation arises regula
during cellular processes and is therefore of considera
biological interest@18#. A characteristic feature, observed
many nanomechanical experiments, is the occurrence of
teaus in force-elongation curves@10,11,13#. These plateaus
are interpreted as structural transitions between the mi
scopically distinct states. While atomistic simulations ha
played an important role in identifying the possible loc
structures such asS- and P-DNA @11,13#, this approach is
limited to relatively short DNA segments containing seve
dozen base pairs. The behavior of longer chains is interpr
on the basis of stack-of-plates model with step-type dep
dent parameters and free energy penalties for non-B steps.
Realistic force-elongation curves are obtained by a suita
choice of parameters and as the consequence of constr
for the total extension and twist~or their conjugate forces!
@28#. Similar models, describing the nonlinear response
B-DNA to stretching@29# or untwisting@30,31#, predict sta-
bility thresholds forB-DNA due to a combination of more
realistic, short-range interaction potentials for rise with twi
rise coupling enforced by the sugar-phosphate backbone

Clearly, the agreement with the experimental data w
increase with the amount of details which is properly rep
sented in a DNA model. However, there is a strong evide
both from atomistic simulations@32# as well as from the
analysis of oligomer crystal structures@33# that the base-pair
level provides a sensible compromise between the con
tual simplicity, the computational cost, and the degree
reality. While Lavery and co-workers@32# have shown that
the base pairs effectively behave as rigid entities, the res
of Hassan and Calladine@33# and of Hunter and co-worker
@34,35# suggest that the dinucleotide parameters observe
oligomer crystals can be understood as a consequence o
der Waals and electrostatic interactions between the ne
boring base pairs and constraints imposed by the su
phosphate backbone.

The purpose of the present paper is to propose of a c
©2003 The American Physical Society11-1
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MERGELL, EJTEHADI, AND EVERAERS PHYSICAL REVIEW E68, 021911 ~2003!
of ‘‘DNA-like’’ molecules with simplified interactions re-
solved at the base or base-pair level. In order to represen
stacking interactions between the neighboring bases~base
pairs!, we use a variant@36# of the Gay-Berne~GB! potential
@37# used in the studies of discotic liquid crystals. The sug
phosphate backbones are reduced to semirigid springs
necting the edges of the disks/ellipsoids. Using Monte Ca
~MC! simulations, we explore the local stacking and the g
bal helical properties as functions of the model paramet
In particular, we measure the effective parameters neede
describe our systems in terms of stack-of-plates~SOP! and
wormlike chain models, respectively. This allows us to co
struct DNA models which properly represent the equilibriu
structure, fluctuations, and linear response. At the same t
we preserve the possibility of local structural transition
e.g., in response to the external forces.

The paper is organized as follows. In Sec. II, we introdu
the base-pair parameters to discuss the helix geometr
terms of these variables. Furthermore, we discuss how
translate the base-pair parameters in macroscopic varia
such as bending and torsional rigidity. In Sec. III, we propo
a model and discuss the methods~MC simulation, energy
minimization! we use to explore its behavior. In Sec. IV, w
present the resulting equilibrium structures, the persiste
lengths as a function of the model parameters, and the
havior under stretching.

II. THEORETICAL BACKGROUND

A. Helix geometry

To resolve and interpret the x-ray-diffraction studies
DNA oligomers, the relative position and orientation of su
cessive base pairs are analyzed in terms of rise~Ri!, slide
~Sl!, shift ~Sh!, twist ~Tw!, roll ~Ro!, and tilt ~Ti! @38# ~see
Fig. 1!. In order to illustrate the relation between these lo
parameters and the overall shape of the resulting helix,
discuss a simple geometrical model in which DNA is view
as a twisted ladder in which all bars lie in one plane. F
vanishing bending angles with Ro5Ti50, each step is char
acterized by four parameters: Ri, Sl, Sh, and Tw@18#. Within
the given geometry, a base pair can be characterized b

FIG. 1. Illustration of all six base-pair parameters and the c
responding coordinate system.
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positionr and the angle of its main axis with then/b axis (n
points to the direction of the large axis,b points to the di-
rection of the small axis, andt, representing the tangent vec
tor of the resulting helix, is perpendicular to then-b plane as
it is illustrated in Fig. 1!. At each step the center points a
displaced by a distanceASl21Sh2 in the n-b plane. The
angle between the successive steps is equal to the
angle, and the center points are located on a helix with rad
r 5ASl21Sh2/@2 sin(Tw/2)#.

In the following, we study the consequences of impos
a simple constraint on the bond lengthsl 1 andl 2 representing
the two sugar-phosphate backbones~the rigid bonds connec
the right and left edges of the bars along then axis, respec-
tively!. Ri is the typical height of a step which we will try to
impose on the grounds that it represents the preferred st
ing distance of the neighboring base pairs. We choose
53.3 Å corresponding to theB-DNA value. One possibility
to fulfill the constraintl 15 l 25 l 56 Å is a pure twist. In this
case, a relationship between the twist angle, the width of
base pairsd, the backbone lengthl, and the imposed rise is
obtained:

Tw5arccosS d222l 212Ri2

d2 D . ~1!

Another possibility is to keep the rotational orientation of t
base pair (Tw50), but to displace its center in then-b plane,
in which case Ri21Sl21Sh2[ l 2. With Sh50, it results in a
skewed ladder with skew angle arcsin(Sl/l )/p @18#.

The general case can be solved as well. In the first ste
general condition is obtained which needs to be fulfilled
any combination of Sh, Sl, and Tw independently of Ri. F
nonvanishing Tw, this yields a relation between Sh and S

tan~Tw!5
Sh

Sl
. ~2!

Using Eq.~2!, the general equation can finally be solved a

Sl5
1

A2
FcosS Tw

2 D 2AsecS Tw

2 D 2

~2l 22d22Ri2!G . ~3!

Equation~3! is the result of the mechanical coupling of slid
shift, and twist due to the backbones. Treating the rise ag
as a constraint, the twist is reduced for increasing slide
shift motion. The center-center distancec between the two
neighboring base pairs is given by

c5ARi21Sl2@11tan~Tw!2#. ~4!

For Tw50 and a given value of Ri, the center-center d
tance is equal to the backbone lengthl, and for Tw
5arccos@(d222l 212Ri2)/d2# one obtainsc5Ri.

B. Thermal fluctuations

In this section, we discuss how to calculate the effect
coupling constants of a harmonic system, valid within t
linear response theory, describing the couplings of the ba

-

1-2
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MODELING DNA STRUCTURE, ELASTICITY, AND . . . PHYSICAL REVIEW E68, 021911 ~2003!
pair parameters along the chain. Furthermore, we show
to translate the measured mean and mean-squared valu
the six microscopic base-pair parameters into macrosc
observables such as bending and torsional persistence le
This provides the linkage between the two descriptio
WLC versus SOP model.

Within the linear response theory, it should be possible
map our model onto a Gaussian system where all tran
tional and rotational degrees of freedom are harmonic
coupled. We refer to this model as the SOP model@27#. The
effective coupling constants are given by the second der
tives of the free energy in terms of base-pair variables aro
the equilibrium configuration. This yields 636 matrices
K nm, describing the couplings of the base-pair parameter
the neighboring base pairs along the chain:

K nm5
]2F

]xi
n]xj

m
. ~5!

Therefore one can calculate the (N21)3(N21) correlation
matrixC in terms of base-pair parameters, whereN is thereby
the number of base pairs:

^C&5S K 11 K 12 K 13 K 14
•••

K 12 K 22 K 23 K 24
•••

�

D 21

. ~6!

The inversion ofC results in a generalized connectivity m
trix with effective coupling constants as entries.

The following considerations are based on the assump
that one only deals with nearest-neighbor interactions. T
the successive base-pair steps are independent of each
and the calculation of the orientational correlation mat
becomes feasible. In the absence of spontaneous disp
ments (Sl5Sh50) and spontaneous bending angles
5Ro50), as it is in the case forB-DNA, going from one
base pair to the neighboring implies three operations. In
der to be independent of the reference base pair, one
rotates the respective base pair into the midframe w
R(Twsp/2) (R is a rotation matrix,Twsp denotes the spon
taneous twist!, followed by a subsequent overall rotation
the midframe,

A5S ti•ti¿1 ti•bi¿1 ti•ni¿1

bi•ti¿1 bi•bi¿1 bi•ni¿1

ni•ti¿1 ni•bi¿1 ni•ni¿1

D , ~7!

taking into account the thermal motions of Ro, Ti, and T
and a final rotation due to the spontaneous twistR(Twsp/2).
The orientational correlation matrix between the two neig
boring base pairs can be written as^Oi i 11&5R(Twsp/
2)^A& R(Twsp/2). A describes the fluctuations around t
mean values. As a consequence of the independence o
successive base-pair parameters, one finds^Oi j &
5„R(Twsp/2)^A&R(Twsp/2)…j 2 i , where the matrix produc
is carried out in the eigenvector basis ofR(Twsp/
2)^A&R(Twsp/2). In the end, one finds a relationship b
tween the mean and mean-squared local base-pair param
02191
w
s of
ic
th.
:

o
a-
ly

a-
d

of

n
n

her,

ce-
i

r-
rst
h

,

-

the

ters

and the bending and torsional persistence length. The ca
lation yields an exponentially decaying tangent-tangent c
relation function ^t(0)•t(s)&5exp(2s/lp) with a bending
persistence length

l p5
2^Ri&

~^Ti2&1^Ro2&!
. ~8!

In the following, we will calculate the torsional persis
tence length. Making use of a simple relationship betwe
the local twist and the base-pair orientations turns out to
more convenient than the transfer matrix approach.

The ~bi!normal-~bi!normal correlation function is an ex
ponentially decaying function with an oscillating term d
pending on the helical repeat lengthh5p^Ri& and the helical
pitch p52p/^Tw&, respectively, namely ^n(0)•n(s)&
5exp(2s/ln)cos(2p s/h). The torsional persistence lengthl n
5 l b can be calculated in the following way. It can be show
that the twist angle Tw of two successive base pairs is rela
to the orientations$t,b,n% and$t8,b8,n8% through

cos~Tw!5
n•n81b•b8

11t•t8
. ~9!

Taking the mean and using the fact that the orientatio
correlation functions and the twist correlation function dec
exponentially,

exp~21/l Tw!5
2 exp~21/l n!

11exp~21/l p!
, ~10!

yields in the case of stiff filaments a simple expression ofl n
depending onl p and l Tw :

l n

2
5

l b

2
5S 2

l Tw
1

1

l p
D 21

, ~11!

where the twist persistence length is defined as

l Tw5
^Ri&

^Tw2&
. ~12!

III. MODEL AND METHODS

Qualitatively, the geometrical considerations sugges
B-DNA-like ground state and the transition to a skewed la
der conformation under the influence of a sufficiently hi
stretching force, because this provides the possibility
lengthen the chain and to partially conserve stacking. Qu
titative modeling requires the specification of a Hamiltonia

A. Introduction of the Hamiltonian

The observed conformation of a dinucleotide base-p
step represents a compromise between~i! the base stacking
interactions~bases are hydrophobic and the base pairs~bp!
can exclude water by closing the gap in between them! and
~ii ! the preferred backbone conformation~the equilibrium
backbone length restricts the conformational space acces
1-3



te
uc
lle
an
tro

a

N
gi

tu

a

in

a

o

te
ti

e

s

lly

ack-

igh-
ck-

he

are
use

er-
ns
the
the
ith
w
eme
ove
hy

ni-
ids

in-
from

MERGELL, EJTEHADI, AND EVERAERS PHYSICAL REVIEW E68, 021911 ~2003!
to the base pairs! @39#. Packer and Hunter@39# have shown
that roll, tilt, and rise are backbone-independent parame
They depend mainly on the stacking interaction of the s
cessive base pairs. In contrast, the twist is solely contro
by the constraints imposed by a rigid backbone. Slide
shift are sequence dependent. While it is possible to in
duce sequence-dependant effects into our model, they
ignored in the present paper.

In the present paper, we propose a generic model for D
where the molecule is described as a stack of thin, ri
ellipsoids representing the base pairs~Fig. 2!. The shape of
the ellipsoids is given by three radiia, b, c of the main axes
in the body frames, which can be used to define a struc
matrix

S5S a 0 0

0 b 0

0 0 c
D , ~13!

where 2a corresponds to the thickness, 2b to the depth
which is a free parameter in the model, and 2c518 Å to the
width of the ellipsoid which is fixed to the diameter of
B-DNA helix. The thickness 2a will be chosen in such a way
that the minimum center-center distance for perfect stack
reproduces the experimentally known value of 3.3 Å.

The attraction and the excluded volume between the b
pairs are modeled by a variant of the GB potential@36,37#
for ellipsoids of arbitrary shapeSi , relative positionrW12, and
orientationA i . The potential can be written as a product
three terms:

U~A1 ,A2 ,rW12!

5U r~A1 ,A2 ,rW12!h12~A1 ,A2 , r̂ 12!x12~A1 ,A2 , r̂ 12!.

~14!

The first term controls the distance dependence of the in
action and has the form of a simple Lennard-Jones poten

U r54eGBF S s

h1gs D 12

2S s

h1gs D 6G , ~15!

where the interparticle distancer is replaced by the distanc
h of closest approach between the two bodies:

h[min~ urW i2rW j u! ;~ i , j ! ~16!

with i Pbody 1 andj Pbody 2. The range of interaction i
controlled by an atomistic length scales53.3 Å, represent-
ing the effective diameter of a base pair.

In general, the calculation ofh is nontrivial. We use the
following approximative calculation scheme which is usua
employed in connection with the GB potential:

h~A1 ,A2 ,rW12!5r 122s12~A1 ,A2 , r̂ 12!, ~17!

s12~A1 ,A2 , r̂ 12!5F1

2
r̂ 12

T G12
21~A1 ,A2! r̂ 12G21/2

, ~18!
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G12~A1 ,A2!5A1
TS1

2A11A2
TS2

2A2 . ~19!

In the present case of oblate objects with rather perfect st
ing behavior, Eq.~17! produces only small deviations from
the exact solution of Eq.~16!.

The other two terms in Eq.~14! control the interaction
strength as a function of the relative orientationA1

TA2 and

position rW12 of interacting ellipsoids:

h12~A1 ,A2 , r̂ 12!5
det@S1#/s1

21det@S2#/s2
2

@det@H12#/~s11s2!#1/2
, ~20!

H12~A1 ,A2 , r̂ 12!5
1

s1
A1

TS1
2A11

1

s2
A2

TS2
2A2 , ~21!

s i~A i , r̂ 12![~ r̂ 12
T A1

TSi
22A1r̂ 12!

21/2 ~22!

and

x12~A1 ,A2 , r̂ 12!5@2r̂ 12
T B12

21~A1 ,A2! r̂ 12#, ~23!

B12~A1 ,A2!5A1
TE1A11A2

TE2A2 ~24!

with

Ei5sS ai

bi ci
0 0

0
bi

ai ci
0

0 0
ci

ai bi

D 5
s

det@Si #
Si

2 . ~25!

We neglect the electrostatic interactions between ne
boring base pairs since at physiological conditions the sta
ing interaction dominates@18,35#.

At this point, we have to find appropriate values for t
thickness 2a and the parameterg of Eq. ~15!. Both param-
eters influence the minimum of the GB potential. There
essentially two possible procedures. One way is to make
of the parametrization result of Everaers and Ejtehadi@36#,
i.e., g521/623021/6, and to choose a value ofa'0.7 which
yields the minimum center-center distance of 3.3 Å for p
fect stacking. Unfortunately, it turns out that the fluctuatio
of the bending angles strongly depend on the flatness of
ellipsoids. The more flat the ellipsoids are the smaller are
fluctuations of the bending angles so that one ends up w
extremely stiff filaments with a persistence length of a fe
thousand base pairs. This can be seen clearly for the extr
case of two perfectly stacked plates, each bending m
leads then to an immediate overlap of the plates. That is w
we choose the second possibility. We keepg as a free pa-
rameter which is used in the end to shift the potential mi
mum to the desired value and fix the width of the ellipso
to be approximately half the known rise valuea51.55 Å.
This requiresg51.07.

The sugar-phosphate backbone is known to be nearly
extensible. The distance between adjacent sugars varies
1-4
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MODELING DNA STRUCTURE, ELASTICITY, AND . . . PHYSICAL REVIEW E68, 021911 ~2003!
5.5 Å to 6.5 Å @18#. This is taken into account by two stif
springs with lengthl 15 l 256.0 Å, connecting neighboring
ellipsoids~see Fig. 2!. The anchor points are situated alon
the centerline in thenW direction~compare Figs. 1 and 2! with
a distance of68 Å from the center of mass. The backbone
thus represented by an elastic spring with nonzero sp
length l 056 Å,

Hel5
k

2
@~ ur1,i 112r1,i u2 l 0!21~ ur2,i 112r2,i u2 l 0!2#.

~26!

Certainly a situation where the backbones are brou
closer to one side of the ellipsoid so as to create a minor
a major groove would be a better description of theB-DNA
structure. But it turns out that due to the ellipsoidal shape
the base pairs and due to the fact that the internal base
degrees of freedom~propeller twist, etc.! cannot relax, a non-
B-DNA-like ground state is obtained where roll and sli
motions are involved.

The competition between the GB potential that forces
ellipsoids to maximize the contact area and the harmo
springs with nonzero spring length which does not like to
compressed leads to a twist in either direction of the orde
6p/5. The right handedness of the DNA helix is due to t
excluded volume interactions between the bases and
backbone@18#, which we do not represent explicitly. Rath
we break the symmetry by rejecting the moves which lead
local twist smaller than2p/18.

Thus we are left with three free parameters in our mod
the GB energy depthe5min(U) which controls the stacking
interaction, the spring constantk which controls the torsiona
rigidity, and the depthb of the ellipsoids which influence
mainly the fluctuations of the bending angles. All other p
rameters such as the width and the height of the ellipsoid
the range of interactions53.3 Å, which determines the
width of the GB potential, are fixed so as to reproduce
experimental values forB-DNA.

FIG. 2. ~Color online! Illustration of DNA geometry for a diam-
eter d516 Å: ~1! Twisted ladder with Sl5Sh50, Ri53.3 Å, Tw
'2p/10. ~2! Skewed ladder with Tw5Sh50, Ri53.4 Å, Sl
'5.0 Å. ~3! Helix with Tw52p/12, Ri53.4 Å, Sl'2.7 Å, Sh
'1.6 Å.
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B. MC simulation

In our model, all interactions are local and it can therefo
conveniently be studied using a MC scheme. In addition
trial moves, consisting of local displacements and rotatio
of one ellipsoid by a small amplitude, it is possible to em
ploy global moves which modify the position and the orie
tation of large parts of the chain. The moves are analogou
~i! the well-known pivot move@40# and ~ii ! a crankshaft
move where two randomly chosen points along the ch
define the axis of rotation around which the inner part of
chain is rotated. The moves are accepted or rejected acc
ing to the Metropolis scheme@41#.

Figure 3 shows that these global moves significantly i
prove the efficiency of the simulation. We measured the c
relation timet of the scalar product of the tangent vectors
the first and the last monomer of 200 independent simula
runs with N510, 20, 50 monomers using~i! only local
moves and~ii ! local and global moves~ratio 1:1!. The cor-
relation time of the global moves is independent of the ch
length withtglobal'78 sweeps, whereast local scales asN3.

Each simulation run comprises 106 MC sweeps where one
MC sweep corresponds to 2N trials ~one rotational and one
translational move per base pair! with N denoting the number
of monomers. The amplitude is chosen such that the ac
tance rate equals approximately 50%. After every 10
sweeps, we store a snapshot of the DNA conformation.
measured the ‘‘time’’ correlation functions of the end-to-e
distance, the rise of one base pair inside the chain, and
three orientational angles of the first and the last monom
and of two neighboring monomers inside the chain in or
to extract the longest relaxation timetmax. We observe
tmax,1000 for all simulation runs.

An estimate for the central processing unit~CPU! time
required for one sweep for chains of lengthN5100 on a
AMD Athlon MP 20001 processor results in 0.026 s, whic
is equivalent to 1.3331024 s per move.

C. Energy minimization

We complemented the simulation study by zero tempe
ture considerations that help to discuss the geometric st
ture, obtained by the introduced interactions, and to ration
ize the MC simulation data. Furthermore, they can be use
obtain an estimate of the critical forcef crit that must be
applied to enable the structural transition fromB-DNA to the
overstretchedS-DNA configuration as a function of the
model parameters$e,k,b%.

FIG. 3. ~Color online! ~left! Illustration of the underlying idea.
The base pairs are represented as rigid ellipsoids. The su
phosphate backbone is treated as semirigid springs connectin
edges of the ellipsoid.~right! Introduced interactions lead to a righ
handed twisted structure.
1-5
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IV. RESULTS

In the following, we will try to motivate an appropriat
parameter set$e, k, b% that can be used for further invest
gations within the framework of the presented model. The
fore we explore the parameter dependence of experime
observables such as the bending persistence length
B-DNA, l p'150 bp, the torsional persistence lengthl t
'260 bp @42#, the mean values and correlations of all s
base-pair parameters and the critical pulling forcef crit
'65 pN @11,43–45# which must be applied to enable th
structural transition fromB-DNA to the overstretched
S-DNA configuration. In fact, static and dynamic contrib
tions to the bending persistence lengthl p of DNA are still
under discussion. It is known thatl p depends on both the
intrinsic curvature of the double helix due to spontaneo
bending of particular base-pair sequences and the the
fluctuations of the bending angles. Bensimonet al. @46# in-
troduced disorder into the WLC model by an additional
of preferred random orientation between successive
ments, and found the following relationship between the p
persistence lengthl pure , i.e. without disorder, the effective
persistence lengthl e f f , and the persistence lengthl disorder
caused by disorder:

l e f f

l pure
55 12

A l pure

l disorder

2
,

l pure

l disorder
!1

2

l pure

l disorder

, l pure

l disorder
@1.

~27!

Since we are dealing with intrinsically straight filaments w
1/l disorder50, we measurel pure . The recent estimates o
l disorder range between 430@47# and 4800@48# bp using
cryoelectron microscopy and cyclization experiments,
spectively, implicating values between 105 and 140 bp
l pure .

A. Equilibrium structure

As a first step, we study the equilibrium structure of o
chains as a function of the model parameters. To investig
the ground state conformation, we rationalize the MC sim
lation results with the help of the geometrical consideratio
and minimum energy calculations. In the end, we will choo
parameters for which our model reproduces the experime
values ofB-DNA @18#:

^Ri&53.323.4 Å,

^Sl&50 Å,

^Sh&50 Å,

^Tw&52p/10.522p/10,

^Ti&50,
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We use the following reduced units in our calculations. T
energy is measured in the units ofkBT, lengths in the units
of Å, forces in the units ofkBTÅ21'40 pN.

We start by minimizing the energy for the various confo
mations shown in Fig. 4 to verify that our model Ham
tonian indeed prefers theB form. Since we have only loca
~nearest-neighbor! interactions, we can restrict the calcul
tions to two base pairs. There are three local minima wh
have to be considered:~i! a stacked-twisted conformatio
with Ri53.3, Sl, Sh, Ti, Ro50, Tw5p/10, ~ii ! a skewed
ladder with Ri53.3, Sl55.0, Sh, Tw, Ti, Ro50, and~iii ! an
unwound helix with Ri56.0, Sl, Sh, Ti, Ro50, Tw50.

FIG. 4. ~Color online! Time correlation functions of the scala
product of the tangent vectors of the first and the last monomet

5 tW(0,1)• tW(t,N) with N510 ~red, plus!, N520 ~green, crosses!,
N550 ~blue, stars! for ~a! global and~b! local moves. It is observed
that tglobal is independent of the chain lengthN, whereast local

scales asN3. The ‘‘time’’ is measured in units of sweeps wher
one MC sweep corresponds toN trials. The CPU time for
one sweep scales asN2 in case of global moves and asN in case of
local moves. Thus the simulation timet scales ast local}N4 and
tglobal}N2.
1-6
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MODELING DNA STRUCTURE, ELASTICITY, AND . . . PHYSICAL REVIEW E68, 021911 ~2003!
Without an external pulling force the global minimum
found to be the stacked-twisted conformation.

We investigated the dependence of Ri and Tw on the
energy depthe that controls the stacking energy for differe
spring constantsk. Ri depends neither one, nor onk, and nor
on b. It shows a constant value of Ri'3.3 Å for all param-
eter sets$e,k,b%. The resulting Tw of the minimum energ
calculation coincides with the geometrically determin
value under the assumption of fixed Ri up to a criticale. Up
to that value the springs behave effectively as rigid rods. T
critical e is determined by the torquet(k,e) that has to be
applied to open the twisted structure for a given value of

Using MC simulations, we can study the effects arisi
from the thermal fluctuations. PlottinĝRi& and ^Tw& as a

FIG. 5. ~Color online! ~a! Rise~Å! and~b! twist as a function of
e @kBT# for 2b58, 9, 10, 11 Å~red, green, blue, purple!. For each
b, there are two data sets fork532 ~plus!,64 ~circles! @kBT/Å2#.
The dotted line corresponds to the minimum energy value.^Ri&
depends only one. In the limit of e→`, the minimum energy
value is reached.~b! In addition to the MC data and the minimum
energy calculation, we calculated the twist with Eq.~1! using the
measured mean rise values of~a! ~red solid lines!. One can observe
that^Tw& changes with all three model parameters. Increasingy and
k decreases especially the fluctuations of Tw and Sh so that^Tw&
increases as a result of the mechanical coupling of the shift
twist motions. In the limit ofe,k→`, the minimum energy value is
reached.
02191
B

e

i.

function of the GB energy depthe, one recognizes that in
general^Ri& is larger than Ri(T50). It converges only for
large values ofe to the minimum energy values. This can b
understood as follows. Without fluctuations the two ba
pairs are perfectly stacked taking the minimum energy c
figuration Ri53.3 Å, Sl, Sh, Ti, Ro50, and Tw5p/10. As
the temperature is increased the fluctuations can only o
to larger Ri values due to the repulsion of neighboring b
pairs. A decrease of Ri would cause the base pairs to in
sect. Increasing the stacking energy reduces the fluctuat
in the direction of the tangent vector and leads to sma
^Ri& value. In the limite→`, it should reach the minimum
energy value which is observed from the simulation data
turn the increase of the mean value of rise results in a sma
twist angle^Tw&. We can calculate with the help of Eq.~1!
the expected twist using the measured mean values of^Ri&.
Figure 5 shows that there is no agreement. The deviations
due to the fluctuations in Sl and Sh which cause the b
pairs to untwist. This is the mechanical coupling of Sl, S
and Tw due to the backbones already mentioned in Sec. I
It is observed that a stiffer springk and a larger depthb of
the ellipsoids result in larger mean twist values. Increas
the spring constantk means decreasing the fluctuations of t
twist and, due to the mechanical coupling, of the shift mot
around the mean values which explains the larger mean t
values. An increase of the ellipsoidal depthb in turn de-
creases the fluctuations of the bending angles. The coup
of the tilt fluctuations with the shift fluctuations leads
larger values for^Tw&. The corresponding limit where
^Tw&→Tw(T50) is given byk,e→`.

The measurement of the mean values of all six base-
step parameters for different temperatures is shown in Ta
I. One can see that with increasing the temperature, the t
angles decrease while the mean value of rise increases.
increase of the center-center distance is not only due to fl
tuations in Ri but also due to fluctuations in Sl and Sh. T
is why there are strong deviations of^c& from ^Ri& even
though the mean values of Sl and Sh vanish. Note that
mean backbone lengtĥl & always amounts to about 6 Å.

The calculation of the probability distribution functions o
all six base-pair parameters shows that especially the rise
twist motions do not follow a Gaussian behavior~Fig. 7!.
The deviation of the distribution functions from the Gauss
shape depends mainly on the stacking energy determine
e. For smaller values ofe, one observes larger deviation
than for largee values.

TABLE I. Dependence of mean values of all six step parame
and of the mean center-center distance^c& on the temperature for
2b511 Å, e520kBT, k564kBT/Å2. ^Ri&, ^Sh&, ^Sl&, and^c& are
measured in Å,l p in base pairs.

T ^Ri& ^Sh& ^Sl& ^Tw& ^Ti& ^Ro& ^c& l p

0 3.26 0.0 0.0 0.64 0.0 0.0 3.26 `

1 3.37 0.01 20.01 0.62 0.0 0.0 3.47 172.8
2 3.76 20.01 20.03 0.47 0.0 0.0 4.41 25.3
3 4.10 20.01 0.01 0.34 0.0 20.01 5.07 14.4
5 4.30 0.03 20.02 0.27 0.0 0.01 5.39 13.6

d

1-7
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MERGELL, EJTEHADI, AND EVERAERS PHYSICAL REVIEW E68, 021911 ~2003!
It is worthwhile to mention that there are mainly two co
relations between the base-pair parameters. The first is a
croscopic twist-stretch coupling determined by a correlat
of Ri and Tw, i.e., an untwisting of the helix implicates larg
rise values. A twist-stretch coupling was introduced in ear
rod models@49–51#, motivated by experiments with torsion
ally constrained DNA@52# which allow for the determination
of this constant. Here it is the result of the preferred stack
of neighboring base pairs and the rigid backbones. The
ond correlation is due to the constrained tilt motion. If w
return to our geometrical ladder model, we recognize imm
diately that a tilt motion alone will always violate the co
straint of fixed backbone lengthl. Even though we allow for
backbone fluctuations in the simulation, the bonds are v
rigid which makes tilting energetically unfavorable. To c
cumvent this constraint, tilting always involves a direct
shift motion.

Figure 6 shows that we recover the anisotropy of
bending angles Ro and Ti as a result of the spatial dim
sions of the ellipsoids. Since the overlap of the succes
ellipsoids is larger in case of rolling, it is more favorable
roll than to tilt.

The correlations can be quantified by calculating the c
relation matrixC of Eq. ~6!. Inverting C yields the effective
coupling constants of the SOP model,K5C 21. Due to the
local interactions, it suffices to calculate the mean and me
squared values of Ri, Sl, Sh, Tw, Ro, and Ti, characteriz
the ‘‘internal’’ couplings of the base pairs:

C5~s! i j ; i , j P$1, . . . ,6%, ~28!

with sx,y5^xy&2^x&^y&.

B. Bending and torsional rigidity

The correlation matrix of Eq.~28! can also be used to
check Eqs.~8! and~11!. Therefore we measured the orient
tional correlation functionŝ t i•t j&, ^ni•nj&, ^bi•bj& and
compared the results to the analytical expressions as
illustrated in Fig. 8. The agreement is excellent.

The simulation data show that the bending persiste
length does not depend on the spring constantk. But it
strongly depends one being responsible for the energy th
must be paid to tilt or roll two respective base pairs. Sinc
change of twist for constant Ri is proportional to a change
bond length, the bond energy contributes to the twist per
tence length explaining the dependence ofl Tw on k ~compare
Fig. 9!.

We also measured the mean-square end-to-end dist
^RE

2& and find that̂ RE
2& deviates from the usual WLC chai

result due to the compressibility of the chain. So as to inv
tigate the origin of the compressibility, we calculate^RE

2& for
the following geometry. We consider two base pairs witho
spontaneous bending angles such that the end-to-end v
RW E can be expressed as

RW E5(
i

cW i5(
i

~Ri t i1Shbi1Slni !. ~29!
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FIG. 6. ~Color online! Contour plots of the measured clouds f
rise-twist, shift-tilt, and roll-tilt to demonstrate the internal co
plings and the anisotropy of the bending angles (2b511 Å,e
520kBT,k564kBT/Å2).
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FIG. 7. Comparison of the probability distribution functions of all base-pair parameters fore520kBT, k564kBT/Å2, 2b58 Å. The
Gaussians~black solid line! are plotted with the measured mean and mean-squared values of the MC simulation, and are in good ag
with the simulation data~circles! except for Ri and Tw.
a
in
,

-

The coordinate system$t i ,bi ,ni% is illustrated in Fig. 1.cW i
denotes the center-center distance of two neighboring b
pairs. Since successive base-pair step parameters are
pendent of each other and Ri, Sh, and Sl are uncorrelated
mean-square end-to-end distance^RE

2& is given by

^RE
2&5(

i
~^ci

2&2^Ri&2!1(
i

(
j

^Ri&2^t i•t j&

5
N^Ri&

g
12N^Ri& l p22l p

2F12expS 2
N^Ri&

l p
D G ,

~30!

whereN denotes the number of base pairs. Note that^Sl& and
02191
se
de-
the

^Sh& vanish. Usinĝ ci
2&5^Ri2&1^Sh2&1^Sl2&, the stretch-

ing modulusg is simply given by

g5
^Ri&

~^Ri2&2^Ri&2!1^Sh2&1^Sl2&
. ~31!

We compared the data for different temperaturesT to Eq.
~30! using the measured bending persistence lengthsl p and
stretching modulig ~see Fig. 10!. The agreement is excel
lent. This indicates thattransverseslide and shift fluctuations
contribute to thelongitudinal stretching modulus of the
chain.
1-9
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MERGELL, EJTEHADI, AND EVERAERS PHYSICAL REVIEW E68, 021911 ~2003!
C. Stretching

The extension experiments on the double-stran
B-DNA have shown that the overstretching transition occ
when the molecule is subjected to stretching forces of 65
or more@45#. The DNA molecule thereby increases in leng
by a factor of 1.8 times the normal contour length. Th
overstretched DNA conformation is calledS-DNA. The
structure ofS-DNA is still under discussion. First evidenc
of the possibleS-DNA conformations were provided by La
very et al. @11,43,44# using atomistic computer simulations

In principle, one can imagine two possible scenarios h
the transition fromB-DNA to S-DNA occurs within our
model. Either the chain untwists and unstacks resulting in
untwisted ladder with approximately 1.8 times the equil
rium length, or the chain untwists and the base pairs s
against each other resulting in a skewed ladder with the s
S-DNA length. The second scenario should be energetic
favorable since it provides a possibility to partially conser
the stacking of successive base pairs. In fact, molecular m
eling of the DNA stretching process@11,43,44# yielded both

FIG. 8. ~Color online! Comparison of the analytical expressio
@Eqs. ~8! and ~11!# for l p and l n ~solid lines! with numerically
calculated orientational correlation functions~data points! for 2b
58 Å, k564kBT/Å2, and e520, . . . ,60@kBT# ~red, plus; . . . ;
black, diamonds!.
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a conformation with strong inclination of base pairs and
unwound ribbon depending on which strand one pulls.

We expect that the critical forcef crit where the structura
transition fromB-DNA to overstretchedS-DNA occurs de-
pends only on the GB energy depthe, controlling the stack-
ing energy. So as a first step to find an appropriate valuee
as input parameter for the MC simulation, we minimize t
Hamiltonian with an additional stretching energyEpull
5 f ci ,i 11, where the stretching force acts along the cen
of-mass axis, with respect to Ri, Sl, and Tw for a giv
pulling force f. Figure 11 shows the resulting stress-stra
curve. First, the pulling force acts solely against the stack
energy up to the critical force where a jump fro
L( f crit 2)/L0'1.05 toL( f crit 1)/L05ARi21Sl2/Ri'1.8 oc-

FIG. 9. ~Color online! Dependency of~a! bending persistence
length l p and ~b! torsional persistence lengthl n on the spring con-
stantk, the width of the ellipsoidsb, and the energy depthe. We
measured the persistence lengths for varying width sizes 2b58, 9,
10, 11 Å ~red, green, blue, purple; from bottom to top! and for two
different spring constantsk532 ~plus!, 64 ~circles! @kBT/Å2#. The
bending persistence length depends solely onb ande. It gets larger
for largere andb values. But it does not depend onk ~the curves for
different k values corresponding to the same widthb lie one upon
the other!. The torsional persistence length in turn depends onk,
since a change of twist for constant Ri is proportional to a chang
bond length.
1-10
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MODELING DNA STRUCTURE, ELASTICITY, AND . . . PHYSICAL REVIEW E68, 021911 ~2003!
curs, followed by another slow increase of the length cau
by the overstretching the bonds.L05L(F50)5Ri denotes
the stress-free center-of-mass distance. As already m
tioned, three local minima are obtained:~i! a stacked-twisted
conformation,~ii ! a skewed ladder, and~iii ! an unwound
helix. The strength of the applied stretching force determi
which of the local minima becomes the global one. The g
bal minimum for small stretching forces is determined to
the stacked-twisted conformation and the global minima
stretching forces larger thanf crit is found to be the skewed
ladder. Therefore the broadness of the force plateau dep
solely on the ratio ofl /Ri determined by the geometry of th
base pairsSand the bond lengthl 56.0 Å. A linear relation-
ship is obtained between the critical force and the stack
energye so that one can extrapolate to smallere values in
order to extract thee value that reproduces the experimen
value of f crit'65 pN. This suggests a value ofe'7.

The simulation results of the previous sections show s
eral problems when this value ofe is chosen. First of all, it
cannot produce the correct persistence lengths as the ch
far too flexible. Second, the undistorted ground state is n
B-DNA anymore. The thermal fluctuations suffice to unsta
and untwist the chain locally. That is why one has to cho
largere values even though the critical force is going to
overestimated.

Therefore we choose the following way to fix the para
eter set$b,e,k%. First of all, we choose a value for the stac
ing energy that reproduces correctly the persistence len
Afterwards the torsional persistence length is fixed to
experimentally known values by choosing an appropri
spring constantk. The depth of the base pairs has also
influence on the persistence lengths of the chain. If the de
b is decreased, larger fluctuations for all the three rotatio
parameters are gained such that the persistence length
smaller. Furthermore, the geometric structure and the be

FIG. 10. ~Color online! Comparison of the simulation data wit
e520kBT, k564kBT/Å2, 2b511 Å, and T51 ~purple, dia-
monds!, 2 ~blue, triangles!, 3 ~green, circles!, 5 ~red, squares! to
Eqs. ~8!, ~30!, and ~31! ~solid lines!. Using the measured bendin
persistence lengths and the stretching moduli, we find a good ag
ment with the predicted behavior. ForT51, we obtain g
56.02 Å21.
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ior under pulling is very sensitive tob. Very small values
provoke non-B-DNA conformations or unphysicalS-DNA
conformations. We choose forb a value of 11 Å for those
reasons. Fore520 and k564, a bending stiffness ofl p
5170 bp and a torsional stiffness ofl n5270 bp are obtained
close to the experimental values. We use this parameter s
simulate the corresponding stress-strain relation.

The simulated stress-strain curves for 50 bp show the
lowing three different regimes~see Fig. 11!.

~a! For small stretching forces, the WLC behavior of th
DNA, in addition with the linear stretching elasticity of th
backbones is recovered. This regime is completely de
mined by the chain lengthN. Due to the coarse-graining
procedure that provides analytic expressions of the per
tence lengths depending on the base-pair parameters@see
Eqs.~8! and~11!#, it is not necessary to simulate a chain of
few thousand base pairs. The stress-strain relation of the
tropic and WLC stretching regime~small relative extensions
L/L0 and small forces! is known analytically@20,53#. Since
we have parametrized the model in such a way that we
cover the elastic properties of DNA on large length scal
the simulation data for very long chains will follow the an
lytical result for small stretching forces.

~b! Around the critical forcef crit'140 pN, which is
mainly determined by the stacking energy of the base pa
the structural transition fromB-DNA to S-DNA occurs.

~c! For larger forces the bonds become overstretched.
MC simulations suggest a critical forcef crit'140 pN which
is slightly smaller than the valuef crit'180 pN calculated by
minimizing the energy. This is due to entropic contribution

In order to further characterize theB-to-S transition, we
measured the mean values of rise, slide, shift, etc., as a f
tion of the applied forces. The evaluation of the MC da
shows that the mean values of shift, roll, and tilt are co
pletely independent of the applied stretching force and t
vanish for allf. Rise increases at the critical force from th

FIG. 11. ~Color online! Force-extension relation calculated b
the minimum energy calculation~black! and obtained by MC simu-
lation for 50 ~red, plus! and 500~blue, crosses! bp. The red solid
line represents the analytical result of the WLC. Inset: The dev
tion between energy minimization~black dotted line! and MC in the
critical force is due to the entropic contributions.e-
1-11
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MERGELL, EJTEHADI, AND EVERAERS PHYSICAL REVIEW E68, 021911 ~2003!
undisturbed value of 3.3 Å to approximately 4.0 Å and d
cays subsequently to the undisturbed value. Quite inter
ingly, the mean value of slide jumps from its undisturb
value of 0 to65 Å ~no direction is favored! and the twist
changes at the critical force fromp/10 to 0. The calculation
of the distribution function of the center-center distancec of
two neighboring base pairs forf 5140 pN yields a double-
peaked distribution~see Fig. 12!, indicating that a part of the
chain is in theB form and a part of the chain in theS form.
The contribution of the three translational degrees of fr
dom to the center-center distancec is shown in Fig. 12. The
S-DNA conformation is characterized by Ri53.3 Å, Sl
565 Å, and Tw50 ~Fig. 13!. In agreement with Refs
@11,43#, we obtain a conformation with highly inclined bas
pairs still allowing for partial stacking of successive ba
pairs.

FIG. 12. ~Color online! ~a! Probability distribution function of
the center-center distance of successive base pairs forf 50 ~red,
squares!, 140 ~green, spheres!, 200 pN~blue, triangles!. ~b! Mean-
squared values of rise~red, plus!, shift ~green, crosses!, slide ~blue,
stars!, and center-of-mass distance~purple, squares! for neighboring
base pairs as a function of the stretching forcef. The dashed line
corresponds to theS-DNA center-of-mass distance.^Tw& of the
resultingS-DNA conformation vanishes as predicted by Eq.~3!.
02191
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V. DISCUSSION

We have proposed a simple model Hamiltonian describ
the double-stranded DNA on the base-pair level. Due to
simplification of the force field and, in particular, the pos
bility of nonlocal MC moves, our model provides access
much larger length scales than atomistic simulations. For
ample, 4h on a AMD Athlon MP 20001 processor are suf
ficient in order to generate 1000 independent conformati
for chains consisting ofN5100 bp.

In the data analysis, the main emphasis was on deriv
the elastic constants on the elastic rod level from the anal
of the thermal fluctuations of base-pair step parameters.
suming a twisted ladder as the ground state conformat
one can provide an analytical relationship between the p
sistence lengths and the local elastic constants given by
~8! and~11! @66#. Future work has to show, if it is possible t
obtain suitable parameters for our mesoscopic model fro
corresponding analysis of atomistic simulations@54# or
quantum-chemical calculations@55#. In the present paper, w
have chosen a top-down approach, i.e., we try to reprod
the experimentally measured behavior of DNA on leng
scalesbeyondthe base diameter. The analysis of the pers
tence lengths, the mean and mean-squared values of a
base-pair parameters, and the critical force, where the st
tural transition fromB-DNA to S-DNA takes place, as a
function of the model parameters$b,k,e% and the applied
stretching forcef suggests the following parameter set:

2b511 Å, ~32!

e520kBT, ~33!

k564kBT/Å2. ~34!

FIG. 13. ~Color online! Contour plot of rise~Å! versus slide~Å!
for the S-DNA conformation.
1-12
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MODELING DNA STRUCTURE, ELASTICITY, AND . . . PHYSICAL REVIEW E68, 021911 ~2003!
It reproduces the correct persistence lengths forB-DNA
and entails the correct mean values of the base-pair step
rameters known by the x-ray-diffraction studies. While t
present model does not include the distinction between
minor and major grooves and suppresses all internal deg
of freedom of the base pairs such as propeller twist, it n
ertheless reproduces some experimentally observed fea
on the base-pair level. For example, the anisotropy of
bending angles~rolling is easier than tilting! is just a conse-
quence of the platelike shape of the base pairs and the tw
stretch coupling is the result of the preferred stacking of
neighboring base pairs and the rigid backbones.

The measured critical force is overestimated by a facto
2 and cannot be improved further by fine tuning of the th
free model parameters$b,k,e%. f crit depends solely on the
stacking energy valuee that cannot be reduced further. Ot
erwise neither the correct equilibrium structure ofB-DNA
nor the correct persistence lengths would be reproduced.
model suggests a structure forS-DNA with highly inclined
base pairs so as to enable at least partial base-pair stac
This is in good agreement with the results of atomis
B-DNA simulations by Lavery and co-workers@11,43#. They
found a force plateau of 140 pN for freely rotating ends@11#.
The mapping to the SOP model yields the following twi
stretch ~Ri-Tw! coupling constant: kRi,Tw5(C 21)Ri,Tw
5267/ Å. kRi,Tw is the microscopic coupling of rise an
twist describing the untwisting of the chain due to an
crease of rise~compare also Fig. 6!.

The possible applications of the present model include
investigation of~i! the charge renormalization of the WL
elastic constants@56#, ~ii ! the microscopic origins of the co
operativity of theB-to-S transition @57#, and ~iii ! the influ-
ence of nicks in the sugar-phosphate backbone on fo
elongation curves. In particular, our model provides
physically sensible framework to study the intercalation
certain drugs or of ethidium bromide between base pairs.
latter is a hydrophobic molecule of roughly the same size
the base pairs that fluoresces green and likes to slip betw
two base pairs forming an DNA-ethidium-bromide comple
The fluorescence properties allow to measure the persist
lengths of DNA@6#. It was also used to argue that the for
plateau is the result of a DNA conformational transition@11#.

In the future, we plan to generalize our approach to
description on the base level, which includes the possib
of hydrogen-bond breaking between complementary ba
along the lines of Refs.@30,31#. A suitably parametrized
model allows a more detailed investigation of DNA unzi
ping experiments@58# as well as a direct comparison b
tween the two mechanism currently discussed for theB-to-S
transition: the formation of skewed ladder conformations~as
in the present paper! versus local denaturation@59–61#.
Clearly, it is possible to study the sequence effects and e
more refined models of DNA. For example, it is possible
mimic the minor and major grooves by bringing the bac
bones closer to one side of the ellipsoids without observ
the non-B-DNA-like ground states. The relaxation of the in
ternal degrees of freedom of the base pairs, characterize
another set of parameters~propeller twist, stagger, etc.!,
should help to reduce the artifacts which are due to the
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lipsoidal shape of the base pairs. Sequence effects ente
the strength of the hydrogen bonds (EGC52.9kBT versus
EAT51.3kBT) as well as via base-dependent stacking int
actions@35#. For example, one finds for guanine a conce
tration of negative charge on the major-groove edge, whe
for cytosine one finds a concentration of positive charge
the major-groove edge. For adenine and thymine inst
there is no strong joint concentration of partial charges@18#.
It is known that in a solution of water and ethanol, where t
hydrophobic effect is less dominant, these partial char
cause GG/CC steps to adoptA or C forms @62# by a negative
slide and positive roll motion and a positive slide motio
respectively. Thus by varying the ratio of the strengths of
stacking versus the electrostatic energy, it should be poss
to study the transition fromB-DNA to A-DNA and C-DNA,
respectively.

VI. SUMMARY

Inspired by the results of Hassan and Calladine@33#
and of Hunter and co-workers@34,35#, we have put forward
the idea of constructing simplified DNA models on th
base~-pair! level where discotic ellipsoids~whose stacking
interactions are modeled via coarse-grained potent
@36,37#! are linked to each other in such a way as to prese
the DNA geometry, its major mechanical degrees of freedo
and the physical driving forces for the structure formati
@18#.

In the present paper, we have used energy minimiza
and Monte Carlo simulations to study a simple representa
of this class of DNA models with nonseparable base pa
For a suitable choice of parameters, we obtained aB-DNA-
like ground state as well as realistic values for the bend
twist persistence lengths. The latter were obtained by ana
ing the thermal fluctuations of long filaments as well as b
systematic coarse-graining from the stack-of-plates to
elastic rod level. In studying the response of DNA to exter
forces or torques, models of the present type are not
stricted to the regime of small local deformations. Rather
specifying a physically motivated Hamiltonian forarbitrary
base-~step! parameters, our ansatz allows for realistic loc
structural transitions. For the simple case of a stretch
force, we observed a transition from a twisted helix to
skewed ladder conformation. While our results sugges
similar structure forS-DNA as atomistic simulations@11#, the
DNA model studied in this paper, of course, cannot be u
to rule out the alternate possibility of local strand separati
@59–61#.

In our opinion, the base~-pair! level provides a sensible
compromise between the conceptual simplicity, the com
tational cost, and the degree of reality. Besides provid
access to much larger scales than atomistic simulations
derivation of such models from more microscopic consid
ations provides considerable insight. At the same time, t
may serve to validate and unify analytical approaches aim
at ~averaged! properties on larger scales@28–31,57#. Finally,
we note that the applicability of linked-ellipsoid models
not restricted to the base-pair level of DNA as the sa
techniques can, for example, also be used to study chrom
@63–65#.
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